Deep Learning

12. Recurrent Neural Networks

Dr. Konda Reddy Mopuri
Dept. of AI, IIT Hyderabad
Jan-May 2024

So far...

(1) Perceptron, MLP, Gradient Descent (Backpropagation)

So far...

(1) Perceptron, MLP, Gradient Descent (Backpropagation)
(2) CNNs

So far...

(1) Perceptron, MLP, Gradient Descent (Backpropagation)
(2) CNNs
(3) 'Feedforward Neural networks'

Feedforward NNs: some observations

(1) Size of the i / p is fixed(?!)

Feedforward NNs: some observations

(1) Size of the i / p is fixed(?!)
(2) Successive i/p are i.i.d.

Feedforward NNs: some observations

(1) Size of the i / p is fixed(?!)
(2) Successive i / p are i.i.d.
(3) Processing of successive i / p is independent of each other

Consider 'auto-completion' task

Q deep

G deep - Search with Google
(1) kuldeep birdar

Q deepika padukone
Q deepthi sunaina
Q deepak bagga
Q deepika pilli
Q deepti sharma
(1) Successive i / p are not independent

Consider 'auto-completion' task

Q deep

G deep - Search with Google
() kuldeep birdar

Q deepika padukone
Q deepthi sunaina
Q deepak bagga
Q deepika pilli
Q deepti sharma
(1) Successive i/p are not independent
(2) Length of the i / p is not fixed (\rightarrow predictions also)

Consider 'auto-completion' task

Q deep

G deep - Search with Google
() kuldeep birdar

Q deepika padukone
Q deepthi sunaina
Q deepak bagga
Q deepika pilli
Q deepti sharma
(1) Successive i/p are not independent
(2) Length of the i / p is not fixed (\rightarrow predictions also)
(3) Same underlying task at different 'time instances'

Consider 'auto-completion' task

Q deep

G deep - Search with Google
() kuldeep birdar

Q deepika padukone
Q deepthi sunaina
Q deepak bagga
Q deepika pilli
Q deepti sharma
(1) Successive i / p are not independent
(2) Length of the i / p is not fixed (\rightarrow predictions also)
(3) Same underlying task at different 'time instances'
(4) Sequence Learning Problems

Sequence Learning Tasks: Example

SENTIMENT ANALYSIS

"Great service for an affordable price.
We will definitely be booking again."

NEUTRAL

Just booked two nights at this hotel."

NEGATIVE
'Horrible services. The room was dirty and unpleasant. was dirty and unpleasant,

Sentiment Analysis (Source)

Sequence Learning Tasks: Example

POS-Tagging (Source:Kaggle)

Sequence Learning Tasks: Example

Action Recognition (Source)

Sequence Learning Tasks: Example

Image Captioning(Source)

Sequence Learning Tasks: Variations

one to one

Sequence Learning Tasks: Variations

Source

Sequence Learning Tasks: Variations

Sequence Learning Tasks: Variations

Source

Sequence Learning Tasks: Variations

- How about convolution?

Recurrent Neural Networks (RNN)

(1) NNs designed to solve sequence learning tasks

Recurrent Neural Networks (RNN)

(1) NNs designed to solve sequence learning tasks
(2) Characteristics
(1) Model the dependence among the i / p

Recurrent Neural Networks (RNN)

(1) NNs designed to solve sequence learning tasks
(2) Characteristics
(1) Model the dependence among the i / p
(2) Handle variable length of i / p

Recurrent Neural Networks (RNN)

(1) NNs designed to solve sequence learning tasks
(2) Characteristics
(1) Model the dependence among the i / p
(2) Handle variable length of i / p
(3) Same function applied at all time instances

Recurrent Neural Networks (RNN)

(1) NNs designed to solve sequence learning tasks
(2) Characteristics
(1) Model the dependence among the i / p
(2) Handle variable length of i / p
(3) Same function applied at all time instances
(3) They are Non-linear Auto-regressive Models

RNNs: internal state

RNNs have internal state (or, memory) that gets updated with input

RNNs: unfolding

RNNs

(1) Apply the same transformation at every time step \rightarrow 'Recurrent' NNs

RNNs

(1) Apply the same transformation at every time step \rightarrow 'Recurrent' NNs
(2) i / p sequence $x_{t} \in \mathbb{R}^{\mathbb{D}}$

RNNs

(1) Apply the same transformation at every time step \rightarrow 'Recurrent' NNs
(2) i / p sequence $x_{t} \in \mathbb{R}^{\mathbb{D}}$
(3) Initial recurrent state $h_{0} \in \mathbb{R}^{\mathbb{Q}}$

RNNs

(1) Apply the same transformation at every time step \rightarrow 'Recurrent' NNs
(2) i / p sequence $x_{t} \in \mathbb{R}^{\mathbb{D}}$
(3) Initial recurrent state $h_{0} \in \mathbb{R}^{\mathbb{Q}}$
(4) RNN model computes sequence of recurrent states iteratively $h_{t}=\phi\left(x_{t}, h_{t-1} ; w\right)$

RNNs

Elmon RNN (1990)

(1) Start with $h_{0}=0$

Elmon RNN (1990)

(1) Start with $h_{0}=0$
(2) $h_{t}=\tanh \left(W_{x h} \cdot x_{t}+W_{h h} \cdot h_{t-1}+b_{h}\right)$

Elmon RNN (1990)

(1) Start with $h_{0}=0$
(2) $h_{t}=\tanh \left(W_{x h} \cdot x_{t}+W_{h h} \cdot h_{t-1}+b_{h}\right)$
(3) $y_{t}=\operatorname{softmax}\left(W_{h y} \cdot h_{t}+b_{y}\right)$

RNNs as computational graph

(1) Use the same set of parameters at each time step

RNNs as computational graph

(1) Use the same set of parameters at each time step

RNNs as computational graph

(1) Use the same set of parameters at each time step

RNNs as computational graph

(1) Use the same set of parameters at each time step
(2) Flexible to realize different variants (with some tricks!)

Multi-layered RNNs

(1) Stack multiple RNNs between i / p and o / p layers

Source

Multi-layered RNNs

(1) Stack multiple RNNs between i / p and o / p layers
(2) $H_{t}^{(l)}=W_{x h}^{(l)} \cdot H_{t}^{(l-1)}+W_{h h}^{(l)} \cdot H_{t-1}^{(l)}+b_{h}^{(l)}$

Source

Backpropagation Through Time (BPTIT)

(1) Consider a many-to-one variant RNN (e.g. sentiment analysis)

Backpropagation Through Time (BPTIT)

(1) Consider a many-to-one variant RNN (e.g. sentiment analysis)
(2) Let's separate the parameters into U, V, and W

(1) Let's now perform SGD (assume loss L is formulated on y_{p})

Backpropagation Through Time (BPTT')

(1) Let's now perform SGD (assume loss L is formulated on y_{p})
(2) \rightarrow we need to compute $\frac{\partial L}{\partial V}, \frac{\partial L}{\partial W}$, and $\frac{\partial L}{\partial U}$

Backpropagation Through Time (BPTIT)

(1) $\frac{\partial L}{\partial V}=\frac{\partial L}{\partial y_{p}} \frac{\partial y_{p}}{\partial V}=$
$\frac{\partial L}{\partial y_{p}} \cdot \frac{\partial y_{p}}{\partial z_{3}} \cdot \frac{\partial z_{3}}{\partial V}$

Backpropagation Through Time (BPTIT)

(1) $\frac{\partial L}{\partial V}=\frac{\partial L}{\partial y_{p}} \frac{\partial y_{p}}{\partial V}=$
$\frac{\partial L}{\partial y_{p}} \cdot \frac{\partial y_{p}}{\partial z_{3}} \cdot \frac{\partial z_{3}}{\partial V}$
(2) $y_{p}=\operatorname{softmax}\left(z_{3}\right)$ and $z_{3}=V \cdot h_{3}+b_{y}$

Backpropagation Through Time (BPTIT)

(1) $\frac{\partial L}{\partial V}=\frac{\partial L}{\partial y_{p}} \frac{\partial y_{p}}{\partial V}=$
$\frac{\partial L}{\partial y_{p}} \cdot \frac{\partial y_{p}}{\partial z_{3}} \cdot \frac{\partial z_{3}}{\partial V}$
(2) $y_{p}=\operatorname{softmax}\left(z_{3}\right)$ and $z_{3}=V \cdot h_{3}+b_{y}$
(3) Since we know that h_{3}, b_{y} are independent of V , we can compute $\frac{\partial L}{\partial V}$ in a single step

Backpropagation Through Time (BPTIT)

(1) Let's now consider $\frac{\partial L}{\partial W}$

Backpropagation Through Time (BPTIT)

(1) Let's now consider $\frac{\partial L}{\partial W}$
(2) There are multiple ' W 's in the computational graph!

(1) For ease of
understanding

Backpropagation Through Time (BPTIT)

(1) Δw change in $\mathrm{W} \rightarrow$ $\left(\frac{\partial h_{1}}{\partial W} \cdot \Delta w\right)$ change in h_{1}

Backpropagation Through Time (BPTT)

(1) Δw change in $\mathrm{W} \rightarrow$ $\left(\frac{\partial h_{1}}{\partial W} \cdot \Delta w\right)$ change in h_{1}
(2) Δw change in $W \rightarrow$

$\left(\frac{\partial h_{2}}{\partial W} \cdot \Delta w\right)$ change in h_{2}

Backpropagation Through Time (BPTIT)

(1) Δw change in $\mathrm{W} \rightarrow$ $\left(\frac{\partial h_{1}}{\partial W} \cdot \Delta w\right)$ change in h_{1}
(2) Δw change in $W \rightarrow$ $\left(\frac{\partial h_{2}}{\partial W} \cdot \Delta w\right)$ change in h_{2}

(3) Δw change in $\mathrm{W} \rightarrow$
$\left(\frac{\partial h_{3}}{\partial W} \cdot \Delta w\right)$ change in h_{3}

Backpropagation Through Time (BPTIT)
 भारती స్రాతేతెక విజ్ఞాన సంస్థ హైదరాబూడ్ Indian Institute of Technology Hyderabad

(1) $\Delta L=$

$$
\frac{\partial L}{\partial h_{1}} \cdot \Delta h_{1}+\frac{\partial L}{\partial h_{2}} \cdot \Delta h_{2}+\frac{\partial L}{\partial h_{3}} \cdot \Delta h_{3}
$$

Backpropagation Through Time (BPTIT)

(1) $\Delta L=$

$$
\frac{\partial L}{\partial h_{1}} \cdot \Delta h_{1}+\frac{\partial L}{\partial h_{2}} \cdot \Delta h_{2}+\frac{\partial L}{\partial h_{3}} \cdot \Delta h_{3}
$$

(2) $\frac{\partial L}{\partial W}=\frac{\partial L}{\partial h_{1}} \frac{\partial h_{1}}{\partial W}+\frac{\partial L}{\partial h_{2}} \frac{\partial h_{2}}{\partial W}+\frac{\partial L}{\partial h_{3}} \frac{\partial h_{3}}{\partial W}$

Backpropagation Through Time (BPTIT)

(1) $\Delta L=$ $\frac{\partial L}{\partial h_{1}} \cdot \Delta h_{1}+\frac{\partial L}{\partial h_{2}} \cdot \Delta h_{2}+\frac{\partial L}{\partial h_{3}} \cdot \Delta h_{3}$
(2) $\frac{\partial L}{\partial W}=\frac{\partial L}{\partial h_{1}} \frac{\partial h_{1}}{\partial W}+\frac{\partial L}{\partial h_{2}} \frac{\partial h_{2}}{\partial W}+\frac{\partial L}{\partial h_{3}} \frac{\partial h_{3}}{\partial W}$
(3) $\frac{\partial L}{\partial h_{3}}=\frac{\partial L}{\partial y_{p}} \frac{\partial y_{p}}{\partial h_{3}}$

Backpropagation Through Time (BPTIT)

(1) $\Delta L=$ $\frac{\partial L}{\partial h_{1}} \cdot \Delta h_{1}+\frac{\partial L}{\partial h_{2}} \cdot \Delta h_{2}+\frac{\partial L}{\partial h_{3}} \cdot \Delta h_{3}$
(2) $\frac{\partial L}{\partial W}=\frac{\partial L}{\partial h_{1}} \frac{\partial h_{1}}{\partial W}+\frac{\partial L}{\partial h_{2}} \frac{\partial h_{2}}{\partial W}+\frac{\partial L}{\partial h_{3}} \frac{\partial h_{3}}{\partial W}$
(3) $\frac{\partial L}{\partial h_{3}}=\frac{\partial L}{\partial y_{p}} \frac{\partial y_{p}}{\partial h_{3}}$

(4) $\frac{\partial L}{\partial h_{2}}=$?

Backpropagation Through Time (BPTIT)

కేతెక విజ్కాన సంస్ర హైదరాబార్ Indian Institute of Technology Hyderabad
(1) $\Delta L=$ $\frac{\partial L}{\partial h_{1}} \cdot \Delta h_{1}+\frac{\partial L}{\partial h_{2}} \cdot \Delta h_{2}+\frac{\partial L}{\partial h_{3}} \cdot \Delta h_{3}$
(2) $\frac{\partial L}{\partial W}=\frac{\partial L}{\partial h_{1}} \frac{\partial h_{1}}{\partial W}+\frac{\partial L}{\partial h_{2}} \frac{\partial h_{2}}{\partial W}+\frac{\partial L}{\partial h_{3}} \frac{\partial h_{3}}{\partial W}$
(3) $\frac{\partial L}{\partial h_{3}}=\frac{\partial L}{\partial y_{p}} \frac{\partial y_{p}}{\partial h_{3}}$

(4) $\frac{\partial L}{\partial h_{2}}=$?
(5) $\frac{\partial L}{\partial h_{2}}=\frac{\partial L}{\partial h_{3}} \frac{\partial h_{3}}{\partial h_{2}}$

Backpropagation Through Time (BPTIT)

కేతెక విజ్కాన సంస్ధ హైదరాబా Indian Institute of Technology Hyderabad
(1) $\Delta L=$ $\frac{\partial L}{\partial h_{1}} \cdot \Delta h_{1}+\frac{\partial L}{\partial h_{2}} \cdot \Delta h_{2}+\frac{\partial L}{\partial h_{3}} \cdot \Delta h_{3}$
(2) $\frac{\partial L}{\partial W}=\frac{\partial L}{\partial h_{1}} \frac{\partial h_{1}}{\partial W}+\frac{\partial L}{\partial h_{2}} \frac{\partial h_{2}}{\partial W}+\frac{\partial L}{\partial h_{3}} \frac{\partial h_{3}}{\partial W}$
(3) $\frac{\partial L}{\partial h_{3}}=\frac{\partial L}{\partial y_{p}} \frac{\partial y_{p}}{\partial h_{3}}$

(4) $\frac{\partial L}{\partial h_{2}}=$?
(5) $\frac{\partial L}{\partial h_{2}}=\frac{\partial L}{\partial h_{3}} \frac{\partial h_{3}}{\partial h_{2}}$
(6) $\frac{\partial L}{\partial h_{1}}=\frac{\partial L}{\partial h_{3}} \frac{\partial h_{3}}{\partial h_{1}}=\frac{\partial L}{\partial h_{3}} \frac{\partial h_{3}}{\partial h_{2}} \frac{\partial h_{2}}{\partial h_{1}}$

Backpropagation Through Time (BPTIT)

కెతిక విజ్జ్న సం్ర్ర హైదరాబా్ర్ Indian Institute of Technology Hyderabad
(1) $\frac{\partial L}{\partial W}=\frac{\partial L}{\partial h_{1}} \frac{\partial h_{1}}{\partial W}+\frac{\partial L}{\partial h_{2}} \frac{\partial h_{2}}{\partial W}+\frac{\partial L}{\partial h_{3}} \frac{\partial h_{3}}{\partial W}$
(2) $\frac{\partial L}{\partial h_{2}}=\frac{\partial L}{\partial h_{3}} \frac{\partial h_{3}}{\partial h_{2}}$
(3) $\frac{\partial L}{\partial h_{1}}=\frac{\partial L}{\partial h_{3}} \frac{\partial h_{3}}{\partial h_{1}}=\frac{\partial L}{\partial h_{3}} \frac{\partial h_{3}}{\partial h_{2}} \frac{\partial h_{2}}{\partial h_{1}}$

Backpropagation Through Time (BPTIT)

ీతిక వజ్కాన సం్ద్రైదరాబా Indian Institute of Technology Hyderabad
(1) $\frac{\partial L}{\partial W}=\frac{\partial L}{\partial h_{1}} \frac{\partial h_{1}}{\partial W}+\frac{\partial L}{\partial h_{2}} \frac{\partial h_{2}}{\partial W}+\frac{\partial L}{\partial h_{3}} \frac{\partial h_{3}}{\partial W}$
(2) $\frac{\partial L}{\partial h_{2}}=\frac{\partial L}{\partial h_{3}} \frac{\partial h_{3}}{\partial h_{2}}$
(3) $\frac{\partial L}{\partial h_{1}}=\frac{\partial L}{\partial h_{3}} \frac{\partial h_{3}}{\partial h_{1}}=\frac{\partial L}{\partial h_{3}} \frac{\partial h_{3}}{\partial h_{2}} \frac{\partial h_{2}}{\partial h_{1}}$
(4) $\frac{\partial L}{\partial W}=\frac{\partial L}{\partial h_{3}} \frac{\partial h_{3}}{\partial h_{2}} \frac{\partial h_{2}}{\partial h_{1}} \frac{\partial h_{1}}{\partial W}+$
$\frac{\partial L}{\partial h_{3}} \frac{\partial h_{3}}{\partial h_{2}} \frac{\partial h_{2}}{\partial W}+\frac{\partial L}{\partial h_{3}} \frac{\partial h_{3}}{\partial W}$

Backpropagation Through Time (BPTT)

తిక విజ్జ్రా సంస్ర హైదరాబాద్ Indian Institute of Technology Hyderabad
(1) $\frac{\partial L}{\partial W}=\frac{\partial L}{\partial h_{1}} \frac{\partial h_{1}}{\partial W}+\frac{\partial L}{\partial h_{2}} \frac{\partial h_{2}}{\partial W}+\frac{\partial L}{\partial h_{3}} \frac{\partial h_{3}}{\partial W}$
(2) $\frac{\partial L}{\partial h_{2}}=\frac{\partial L}{\partial h_{3}} \frac{\partial h_{3}}{\partial h_{2}}$
(3) $\frac{\partial L}{\partial h_{1}}=\frac{\partial L}{\partial h_{3}} \frac{\partial h_{3}}{\partial h_{1}}=\frac{\partial L}{\partial h_{3}} \frac{\partial h_{3}}{\partial h_{2}} \frac{\partial h_{2}}{\partial h_{1}}$
(4) $\frac{\partial L}{\partial W}=\frac{\partial L}{\partial h_{3}} \frac{\partial h_{3}}{\partial h_{2}} \frac{\partial h_{2}}{\partial h_{1}} \frac{\partial h_{1}}{\partial W}+$

$$
\frac{\partial L}{\partial h_{3}} \frac{\partial h_{3}}{\partial h_{2}} \frac{\partial h_{2}}{\partial W}+\frac{\partial L}{\partial h_{3}} \frac{\partial h_{3}}{\partial W}
$$

(5)

$$
\frac{\partial L}{\partial W}=\sum_{k=1}^{3} \frac{\partial L}{\partial h_{3}} \frac{\partial h_{3}}{\partial h_{k}} \frac{\partial h_{k}}{\partial W}
$$

Backpropagation Through Time (BPTIT)

(1) $\frac{\partial L}{\partial W}=\frac{\partial L}{\partial h_{1}} \frac{\partial h_{1}}{\partial W}+\frac{\partial L}{\partial h_{2}} \frac{\partial h_{2}}{\partial W}+\frac{\partial L}{\partial h_{3}} \frac{\partial h_{3}}{\partial W}$
(2) $\frac{\partial L}{\partial h_{2}}=\frac{\partial L}{\partial h_{3}} \frac{\partial h_{3}}{\partial h_{2}}$
(3) $\frac{\partial L}{\partial h_{1}}=\frac{\partial L}{\partial h_{3}} \frac{\partial h_{3}}{\partial h_{1}}=\frac{\partial L}{\partial h_{3}} \frac{\partial h_{3}}{\partial h_{2}} \frac{\partial h_{2}}{\partial h_{1}}$
(4) $\frac{\partial L}{\partial W}=\frac{\partial L}{\partial h_{3}} \frac{\partial h_{3}}{\partial h_{2}} \frac{\partial h_{2}}{\partial h_{1}} \frac{\partial h_{1}}{\partial W}+$

$$
\frac{\partial L}{\partial h_{3}} \frac{\partial h_{3}}{\partial h_{2}} \frac{\partial h_{2}}{\partial W}+\frac{\partial L}{\partial h_{3}} \frac{\partial h_{3}}{\partial W}
$$

(5)

$$
\frac{\partial L}{\partial W}=\sum_{k=1}^{3} \frac{\partial L}{\partial h_{3}} \frac{\partial h_{3}}{\partial h_{k}} \frac{\partial h_{k}}{\partial W}
$$

(6)

$$
\frac{\partial L}{\partial W}=\sum_{k=1}^{3} \frac{\partial L}{\partial h_{3}}\left(\prod_{j=k+1}^{3} \frac{\partial h_{j}}{\partial h_{j-1}}\right) \frac{\partial h_{k}}{\partial W}
$$

Backpropagation Through Time (BPTIT)
 భారీయ సాంకేతెక విజ్ఞాన సంస్ఫ హైదరాబాద్ भारतीय पौद्योगिकी संस्थान हैदराबाद
 Indian Institute of Technology Hyderabad

(1) Similarly $\frac{\partial L}{\partial U}$

Backpropagation Through Time (BPTIT)

(1) Consider a
many-to-many variant
RNN (e.g. PoS tagging)

Backpropagation Through Time (BPTIT)

(1) Consider a many-to-many variant RNN (e.g. PoS tagging)
(2) Full sequence is one training example (although there is an error computed at each time step)

Backpropagation Through Time (BPTIT)

(1) Consider a many-to-many variant RNN (e.g. PoS tagging)
(2) Total error is the sum of errors at each time step

Backpropagation Through Time (BPTIT)

(1) At times, sequences can be quite lengthy!

Backpropagation Through Time (BPTIT)

(1) At times, sequences can be quite lengthy!
(2) Need to perform BPTT through many layers
(1) At times, sequences can be quite lengthy!
(2) Need to perform BPTT through many layers
(3)

$$
\frac{\partial L}{\partial W}=\sum_{k=1}^{3} \frac{\partial L}{\partial h_{3}}\left(\prod_{j=k+1}^{3} \frac{\partial h_{j}}{\partial h_{j-1}}\right) \frac{\partial h_{k}}{\partial W}
$$

(1) At times, sequences can be quite lengthy!
(2) Need to perform BPTT through many layers
(3)

$$
\frac{\partial L}{\partial W}=\sum_{k=1}^{3} \frac{\partial L}{\partial h_{3}}\left(\prod_{j=k+1}^{3} \frac{\partial h_{j}}{\partial h_{j-1}}\right) \frac{\partial h_{k}}{\partial W}
$$

(4) Leads to Vanishing Gradient problem!

Backpropagation Through Time (BPTT)

(1) At times, sequences can be quite lengthy!
(2) Need to perform BPTT through many layers
(3)

$$
\frac{\partial L}{\partial W}=\sum_{k=1}^{3} \frac{\partial L}{\partial h_{3}}\left(\prod_{j=k+1}^{3} \frac{\partial h_{j}}{\partial h_{j-1}}\right) \frac{\partial h_{k}}{\partial W}
$$

(4) Leads to Vanishing Gradient problem!
(5) No impact of earlier time steps at later times (difficult to learn long-term dependencies!)

Backpropagation Through Time (BPTT)

(1) We may move on from sigmoid/tanh (e.g. ReLU) and your gradients may not die

Backpropagation Through Time (BPTIT)

(1) We may move on from sigmoid/tanh (e.g. ReLU) and your gradients may not die
(2) In some cases $\left(\prod_{j=k+1}^{3} \frac{\partial h_{j}}{\partial h_{j-1}}\right)$ may lead to exploding gradients
(1) We may move on from sigmoid/tanh (e.g. ReLU) and your gradients may not die
(2) In some cases $\left(\prod_{j=k+1}^{3} \frac{\partial h_{j}}{\partial h_{j-1}}\right)$ may lead to exploding gradients
(3) But, not much of an issue
(1) We may move on from sigmoid/tanh (e.g. ReLU) and your gradients may not die
(2) In some cases $\left(\prod_{j=k+1}^{3} \frac{\partial h_{j}}{\partial h_{j-1}}\right)$ may lead to exploding gradients
(3) But, not much of an issue

- Easy to diagnose (NaN)
- Gradient clipping

Backpropagation Through Time (BPTIT)

(1) We may move on from sigmoid/tanh (e.g. ReLU) and your gradients may not die
(2) In some cases $\left(\prod_{j=k+1}^{3} \frac{\partial h_{j}}{\partial h_{j-1}}\right)$ may lead to exploding gradients
(3) But, not much of an issue

- Easy to diagnose (NaN)
- Gradient clipping
(4) Better initialization, Regularization, short time sequences (Truncation)

Backpropagation Through Tine (BP) Pim

Truncated BPTT (CS231n)

Handling long-term dependencies

(1) Architectural modifications to RNNs

Handling long-term dependencies

(1) Architectural modifications to RNNs

- LSTM (1997 by Sepp Hochreiter and Jürgen Schmidhuber; Improved by Gers et al. in 2000)

Handling long-term dependencies

(1) Architectural modifications to RNNs

- LSTM (1997 by Sepp Hochreiter and Jürgen Schmidhuber; Improved by Gers et al. in 2000)
- GRU (Cho et al. 2014)

LSTM

(1) Long Short-Term Memory

LSTM

(1) Long Short-Term Memory
(2) At a time ' \mathbf{t} ', hidden state $h^{(t)}$ and cell state $c^{(t)}$

LSTM

(1) Long Short-Term Memory
(2) At a time ' t ', hidden state $h^{(t)}$ and cell state $c^{(t)}$

- Cell stores long-term information

LSTM

(1) Long Short-Term Memory
(2) At a time ' t ', hidden state $h^{(t)}$ and cell state $c^{(t)}$

- Cell stores long-term information
- LSTM can erase, write, and read information from the cell

LSTM

(1) Long Short-Term Memory
(2) At a time ' t ', hidden state $h^{(t)}$ and cell state $c^{(t)}$

- Cell stores long-term information
- LSTM can erase, write, and read information from the cell
(3) What to erase/write/read is controltted by corresponding gates

LSTM

(1) Long Short-Term Memory
(2) At a time ' t ', hidden state $h^{(t)}$ and cell state $c^{(t)}$

- Cell stores long-term information
- LSTM can erase, write, and read information from the cell
(3) What to erase/write/read is controltted by corresponding gates
- At time t , elements of the gates can be 0 (closed), 1 (open), or in-between

LSTM

(1) Long Short-Term Memory
(2) At a time ' t ', hidden state $h^{(t)}$ and cell state $c^{(t)}$

- Cell stores long-term information
- LSTM can erase, write, and read information from the cell
(3) What to erase/write/read is controltted by corresponding gates
- At time t , elements of the gates can be 0 (closed), 1 (open), or in-between
- Gates are dynamically computed based on the context

LSTM

RNNs are chain of repeating moduels. Basic RNN (Colah's blog)

LSTM

RNNs are chain of repeating moduels. LSTM (Colah's blog)

LSTM

The LSTM node. (Colah's blog)

LSTM: The cell state

Cell state in LSTM (Colah's blog)

LSTM: The cell state

(1) Info. can flow through unchanged

Cell state in LSTM (Colah's blog)

LSTM: The cell state

(1) Info. can flow through unchanged
(2) Gates can add/remove information to cell state

Cell state in LSTM (Colah's blog)

LSTM: The gates

(1) Sigmoid neural nets (o/p numbers in $[0,1]$)

LSTM: The gates

(1) Sigmoid neural nets (o/p numbers in $[0,1]$)
(2) Point-wise multiplication operation

LSTM: The forget gate

(1) Decides what to throw away from cell state (e.g. forgetting the gender of old subject in light of a new one)

$$
f_{t}=\sigma\left(W_{f} \cdot\left[h_{t-1}, x_{t}\right]+b_{f}\right)
$$

Forget gate in LSTM (Colah's blog)

LSTM: The input gate

(1) Next is to decide what new to store in cell state (e.g. add the gender of a new subject)

$$
\begin{aligned}
i_{t} & =\sigma\left(W_{i} \cdot\left[h_{t-1}, x_{t}\right]+b_{i}\right) \\
\tilde{C}_{t} & =\tanh \left(W_{C} \cdot\left[h_{t-1}, x_{t}\right]+b_{C}\right)
\end{aligned}
$$

Input gate in LSTM (Colah's blog)

LSTM: The input gate

(1) Next is to decide what new to store in cell state (e.g. add the gender of a new subject)
(2) Done in two steps

- input gate decides what to update

$$
\begin{aligned}
i_{t} & =\sigma\left(W_{i} \cdot\left[h_{t-1}, x_{t}\right]+b_{i}\right) \\
\tilde{C}_{t} & =\tanh \left(W_{C} \cdot\left[h_{t-1}, x_{t}\right]+b_{C}\right)
\end{aligned}
$$

- A tanh layer creates a candidate cell state

LSTM: The cell state update

Cell state update in LSTM (Colah's blog)

LSTM: The output

$$
\begin{aligned}
o_{t} & =\sigma\left(W_{o}\left[h_{t-1}, x_{t}\right]+b_{o}\right) \\
h_{t} & =o_{t} * \tanh \left(C_{t}\right)
\end{aligned}
$$

Output computation in LSTM (Colah's blog) e.g. may be a verb that is coming next in case of a language model

LSTM variant: Peephole connections

$$
\begin{aligned}
f_{t} & =\sigma\left(W_{f} \cdot\left[\boldsymbol{C}_{t-1}, h_{t-1}, x_{t}\right]+b_{f}\right) \\
i_{t} & =\sigma\left(W_{i} \cdot\left[\boldsymbol{C}_{t-1}, h_{t-1}, x_{t}\right]+b_{i}\right) \\
o_{t} & =\sigma\left(W_{o} \cdot\left[\boldsymbol{C}_{t}, h_{t-1}, x_{t}\right]+b_{o}\right)
\end{aligned}
$$

Variant with gates looking into the Cell state in LSTM by Ger et al. (Colah's blog)

LSTM variant: Coupled i / p and forget gates

$$
C_{t}=f_{t} * C_{t-1}+\left(1-f_{t}\right) * \tilde{C}_{t}
$$

Variant with coupled input and forget gates. (Colah's blog)

LSTM \rightarrow GRU

$$
\begin{aligned}
& z_{t}=\sigma\left(W_{z} \cdot\left[h_{t-1}, x_{t}\right]\right) \\
& r_{t}=\sigma\left(W_{r} \cdot\left[h_{t-1}, x_{t}\right]\right) \\
& \tilde{h}_{t}=\tanh \left(W \cdot\left[r_{t} * h_{t-1}, x_{t}\right]\right) \\
& h_{t}=\left(1-z_{t}\right) * h_{t-1}+z_{t} * \tilde{h}_{t}
\end{aligned}
$$

Gated Recurrent Unit (Colah's blog)

LSTM: handling the vanishing gradients

(1) Via the gates!

LSTM: handling the vanishing gradients

(1) Computational graph at time $k-1$

LSTM: handling the vanishing gradients

(1) $\tilde{C}_{k}=$

$$
\tanh \left(W_{c}\left[h_{t-1}, x_{t}\right]+b_{c}\right)
$$

LSTM: handling the vanishing gradients

(1) All the gates

LSTM: handling the vanishing gradients

(1) Next cell state

LSTM: handling the vanishing gradients

(1) Next hidden state

LSTM: handling the vanishing gradients

(1) Running till time step ' t '

LSTM: handling the vanishing gradients

(1) Consider loss computation

LSTM: handling the vanishing gradients

(1) Let's know if the gradient flows to an arbitrary time step 'k'

LSTM: handling the vanishing gradients

(1) Specifically, let's consider if gradient flows to W_{f} through C_{k}

LSTM: handling the vanishing gradients

(1) Specifically, let's consider if gradient flows to W_{f} through C_{k}
(2) Note that there are multiple paths between L and C_{k} (but, consider one such path as highlighted)

LSTM: handling the vanishing gradients

(1) Grad $=$
$\frac{\partial L}{\partial h_{t}} \frac{\partial h_{t}}{\partial C_{t}} \frac{\partial C_{t}}{\partial C_{t-1}} \ldots \frac{\partial C_{k+1}}{\partial C_{k}}$

LSTM: handling the vanishing gradients

(1) Grad $=$
$\frac{\partial L}{\partial h_{t}} \frac{\partial h_{t}}{\partial C_{t}} \frac{\partial C_{t}}{\partial C_{t-1}} \ldots \frac{\partial C_{k+1}}{\partial C_{k}}$
(2) $\frac{\partial L}{\partial h_{t}}$ doesn't vanish (no intermediate nodes)

LSTM: handling the vanishing gradients

(1) $\operatorname{Grad}=$
$\frac{\partial L}{\partial h_{t}} \frac{\partial h_{t}}{\partial C_{t}} \frac{\partial C_{t}}{\partial C_{t-1}} \ldots \frac{\partial C_{k+1}}{\partial C_{k}}$
(2) $\frac{\partial L}{\partial h_{t}}$ doesn't vanish (no intermediate nodes)
(3) $h_{t}=o_{t} \odot \sigma\left(C_{t}\right)$

LSTM: handling the vanishing gradients

(1) Grad $=$
$\frac{\partial L}{\partial h_{t}} \frac{\partial h_{t}}{\partial C_{t}} \frac{\partial C_{t}}{\partial C_{t-1}} \ldots \frac{\partial C_{k+1}}{\partial C_{k}}$
(2) $\frac{\partial L}{\partial h_{t}}$ doesn't vanish (no intermediate nodes)
(3) $h_{t}=o_{t} \odot \sigma\left(C_{t}\right)$
(4) $\rightarrow \frac{\partial h_{t}}{\partial C_{t}}=\mathbb{D}\left(o_{t} \odot \sigma^{\prime}\left(C_{t}\right)\right)$
(diagonal matrix)

LSTM: handling the vanishing gradients

(1) $C_{t}=f_{t} \odot C_{t-1}+i_{t} \odot \tilde{C}_{t}$

LSTM: handling the vanishing gradients

(1) $C_{t}=f_{t} \odot C_{t-1}+i_{t} \odot \tilde{C}_{t}$
(2) Note that \tilde{C}_{t} depends on C_{t-1}, and for simplicity assume the gradient from that term vanishes

LSTM: handling the vanishing gradients

(1) $C_{t}=f_{t} \odot C_{t-1}+i_{t} \odot \tilde{C}_{t}$
(2) Note that \tilde{C}_{t} depends on C_{t-1}, and for simplicity assume the gradient from that term vanishes
(3) Grad $=$ $\frac{\partial L}{\partial h_{t}} \frac{\partial h_{t}}{\partial C_{t}} \frac{\partial C_{t}}{\partial C_{t-1}} \ldots \frac{\partial C_{k+1}}{\partial C_{k}}$

LSTM: handling the vanishing gradients

(1) $C_{t}=f_{t} \odot C_{t-1}+i_{t} \odot \tilde{C}_{t}$
(2) Note that \tilde{C}_{t} depends on C_{t-1}, and for simplicity assume the gradient from that term vanishes
(3) Grad $=$ $\frac{\partial L}{\partial h_{t}} \frac{\partial h_{t}}{\partial C_{t}} \frac{\partial C_{t}}{\partial C_{t-1}} \ldots \frac{\partial C_{k+1}}{\partial C_{k}}$
(4) $\mathrm{Grad}=$
$\mathbb{L}^{\prime} \cdot \mathbb{D}\left(o_{t} \odot \sigma^{\prime}\left(C_{t}\right)\right) \mathbb{D}\left(f_{t}\right)$.
$\mathbb{D}\left(f_{t-1}\right) \ldots \mathbb{D}\left(f_{k+1}\right)$

LSTM: handling the vanishing gradients

${ }^{(1)} \operatorname{Grad}=\mathbb{L}^{\prime} \cdot \mathbb{D}\left(o_{t} \odot \sigma^{\prime}\left(C_{t}\right)\right) \mathbb{D}\left(f_{t}\right) \cdot \mathbb{D}\left(f_{t-1}\right) \ldots \mathbb{D}\left(f_{k+1}\right)$

LSTM: handling the vanishing gradients

(1) $\operatorname{Grad}=\mathbb{L}^{\prime} \cdot \mathbb{D}\left(o_{t} \odot \sigma^{\prime}\left(C_{t}\right)\right) \mathbb{D}\left(f_{t}\right) \cdot \mathbb{D}\left(f_{t-1}\right) \ldots \mathbb{D}\left(f_{k+1}\right)$
(2) Red term vanishes only if during the forward pass this product caused the information to vanish (by the time ' t ')!

LSTM: handling the vanishing gradients

(1) $\operatorname{Grad}=\mathbb{L}^{\prime} \cdot \mathbb{D}\left(o_{t} \odot \sigma^{\prime}\left(C_{t}\right)\right) \mathbb{D}\left(f_{t}\right) \cdot \mathbb{D}\left(f_{t-1}\right) \ldots \mathbb{D}\left(f_{k+1}\right)$
(2) Red term vanishes only if during the forward pass this product caused the information to vanish (by the time ' t ')!
(3) That means, gradient will vanish only if dependency in the forward pass vanishes! (which makes sense)

LSTM: handling the vanishing gradients

(1) $\operatorname{Grad}=\mathbb{L}^{\prime} \cdot \mathbb{D}\left(o_{t} \odot \sigma^{\prime}\left(C_{t}\right)\right) \mathbb{D}\left(f_{t}\right) \cdot \mathbb{D}\left(f_{t-1}\right) \ldots \mathbb{D}\left(f_{k+1}\right)$
(2) Red term vanishes only if during the forward pass this product caused the information to vanish (by the time ' t ')!
(3) That means, gradient will vanish only if dependency in the forward pass vanishes! (which makes sense)
(4) Gates do the same regulation in backward pass as they do in the forward

RNNs

(1) Dominated until 2015

RNNs

(1) Dominated until 2015
(2) Driven applications such as handwriting recognition, ASR, Machine translation, Parsing, image captioning, VQA, etc.

RNNs

(1) Dominated until 2015
(2) Driven applications such as handwriting recognition, ASR, Machine translation, Parsing, image captioning, VQA, etc.
(3) Attention and Transformers are becoming more popular lately

